首页 > 能源 > 民企 > 正文

能源互联网环境下的多能需求响应技术

文章来源:
字体:
发布时间:2020-10-24 19:53:00

能源互联网环境下的多能需求响应技术


提升清洁能源特别是可再生能源在终端的消费比例,及实现多种能源类型的综合互补配置,是能源互联网的发展趋势。能源互联网环境下,对需求响应的要求也从传统方式过渡到多能综合需求响应。首先概述了国内外能源互联网的发展及相关项目与政策;其次,对常用的需求响应技术如自动需求响应技术、储能技术、信息与通信技术、电力计量技术、智能控制技术、负荷聚合技术等进行了梳理介绍与分析。着重分析了能源互联网环境下的自动需求响应技术、储能技术、信息与通信技术的发展重点,其中信息物理系统与接口标准是自动需求响应技术的关键,储能技术的重点是降低成本,信息与通信技术侧重于区块链及5G等新技术的应用。最后,总结各需求响应技术未来的发展方向及面对的问题,并提出促进多能需求响应技术发展建议。

(来源:《电力需求侧管理》作者:黄 豫,邵 冲,郝 洁,柴明哲,高赐威,陈 涛)

0 引言

我国是能源生产及消费大国,能源的发展借助科技与产业革命进入到升级转型期。能源产业与互联网深度融合,多种能源互补发展,能源互联网以能源为主体、互联网为手段推动绿色清洁发展满足电力需求",特别是促进可再生能源消纳问题。 近年来,包括中国在内的一些国家对能源互联网的概念与发展模式及特征、实施环境及技术要求有较多研究》,针对清洁能源、分布式电源、智能电网及互联开展了储能技术、信息通信技术、电网技术、电源技术、能源转型分析及源网荷储联合优化技术等方面的研究,为能源互联网的发展奠定了技术及实施基础。 各类能源最终都在消费端实现其利用价值,长期以来消费端对于用能没有选择权。借助能源互联网,电、冷、热、气等多能互补使用,拓宽消费端用能选择权,加强各能源体系间耦合程度,进而推动了生产端的能源互联互通,打破了不同能源体系间垄断壁垒,提升了能源服务。电力需求响应通过电力消费端与电能生产端互动,有效平衡电力供需",给予电力消费端一定的用电选择权。而能源互联网环境下的多能需求响应,能源消费端根据电价机制或激励机制,改变其使用能源的方式,从而实现能源供需调整。 目前对需求响应技术的研究一方面较多研究了电力需求响应机制,基于电价型的需求响应技术是用户被动态电价引导,出于经济性而改变用电方式,其定价机制包括分时电价》、尖峰电价"、实时电价"等。基于激励型的需求响应技术是指用户根据设定的惩罚奖励机制出于经济效益最优而改变用电方式,,传统的负荷控制方式主要有可中断负荷、直接负荷控制"等,目前多个省份采取了用户侧通过需求侧竞价方式参与需求响应,逐渐向市场方式过渡。对于多能需求响应的研究主要集中在建模及优化分析方面,文献【10】分析了自动需求响应技术在能源互联网中的应用及相关问题,文献【11】研究了电热互联的优化调度,文献【12】研究了冷热电联供的互补优化,文献【13】利用深度学习模型研究多能系统运行策略,文献【14】通过柔性负控技术提升用户参与需求响应意愿,文献【15】研究了采用储能系统弥补分布式光伏出力波动的优化问题,文献【16】从价格机制的角度研究源荷互动的多能系统。本文通过对较为前沿的自动需求响应技术、储能技术、信息与通信技术、电力计量技术、智能控制技术、负荷聚合技术等在多能领域的应用和发展进行梳理,为需求响应的支撑技术研究工作提供参考,促进需求响应工作顺利进行。

1 能源互联网的发展

能源互联网作为能源交易载体,由包括电力网和其它种类能源网络构成,将分散在各处的多种能源通过网架送至消费端。在能源互联网的概念中,能源不仅指传统的化石能源也包括新能源,一次能源与二次能源的相互耦合。互联网不仅指能源流通的物理渠道,也包含打通多元能源参与主体及消费终端间连接的信息通道,体现能源流与信息流的联合,通过信息网的数据挖掘支撑能源网的调度。能源互联网支持各类能源作为商品通过互联网平台进行交易及分配的业务,最终达到资源优化配置能力强、绿色低碳、安全可靠的目的。 在欧美地区,能源互联网开展得比较早,并通过不同的项目进行研究。美国的the Future Renewable Electric Energy Delivery and Management System项目,开展配电网的能源互联探索;欧盟的Future Internet ForSmart Energy项目,构建了以信息通信技术为基础的智能能源系统;德国开展了E-Energy项目,能分 析负荷的需求响应潜力,推动能源高效利用;瑞士的Vision of Future Energy Networks项目侧重于多能传输系统及分布式能源的转换和存储"。 2016年国家发改委及国家能源局的相关部门发布了《关于推进"互联网+"智慧能源发展的指导意见》,提出能源互联网是推动我国能源革命的重要战略支撑。近年来,能源互联网以促进可再生能源消纳推动能源产业变革,借助互联网平台拓宽能源服务领域。 在多种能源互联的大背景下,除了本身必备的物联网技术及能源网关技术等要求外,在智能电网环境下开展需求响应,对需求响应技术及其实践应用也提出了新的要求。

2多能需求响应技术

随着能源互联网的发展,可以将冷、热、电等多种能源纳入需求响应范围内,即多能需求响应。多能需求响应技术可以利用冷、热、电等不同能源的产能、用能需求在时间以及空间上的特性差异,实现多能互补。也意味着当用户改变对某一种或多种能源的需求时将会影响到另一种能源的供求关系。基于此,,用户可对不同能源的需求进行调整,同样可以达到相同的削峰填谷、缓解用能紧张的效果,实现多元用户的多能需求响应。 多能需求响应可以充分考虑多能系统的耦合关系,利用不同能源的时空互补特性,相比传统的需求响应方案可以进一步充分挖掘用户的需求响应潜力,提升响应资源能力,优化用户的用能结构。并且相比传统的需求响应策略,能够使得用户侧的损失更小,同时能够减少能源网的调度费用,提升用电安全性与稳定性,有利于实现能源网与用户的双赢,提高多元化用户参与需求响应的积极性。用户侧综合能源系统的互动模型如图1所示。

深度文章 | 能源互联网环境下的多能需求响应技术

而实现能源互联网下的多能需求响应需要众多技术作为支撑∶储能技术可以解耦能量的生产和消耗,在多能需求响应中用户侧的电、热、冷系统的耦合程度很高.储能技术的支撑尤为重要;负荷聚 合技术可以将中小用户的需求响应资源聚合起来参与多能需求响应;多能需求响应下的信息与通信技术能够支撑交易及结算过程;电力计量技术可以准确计量采集和存储多能需求响应技术下的用户数据;智能控制技术可以实现多能需求响应技术下的能源协调控制;自动需求响应技术可以完全不依赖人工操作,靠信号触发需求响应实施程序自动调度负荷等等。具体的相关技术介绍如下。

2.1 自动需求响应技术

自动需求响应技术是在智能电网的基础上,靠信号触发需求响应实施程序自动调度负荷,而完全不依赖人工操作。随着多能需求响应的发展,自动需求响应技术需要拓展到多能领域,自动需求响应应当包括参与多能需求响应用户端数据采集、传输、分析形成可调资源库,当出现高电价或需要维护电网稳定性时向用户端能量管理系统发送触发信号,当接收到触发信号后按照预先制定的负荷设备与分布式电源设备控制逻辑方案,实施需求响应完成削峰填谷,并将信息反馈至自动需求响应服务器,触发条件及执行逻辑均可预定,如果需要修改则将新的策略重新写入控制程序。 国外自动需求响应技术已开展了系统框架、运行模型及机制等研究,日本已经试验验证自动需求响应技术的可行性。国内在这方面刚刚起步,江苏、上海、山东已展开相关研究。 信息物理系统(cyber physical systems,CPS)能够支撑网荷间信息交互,支持多能需求响应用户侧设备接入被主动识别的功能,能使网荷侧信息快速达到协调共享。目前江苏、上海已建立CPS并融合了实时仿真平台,更全面的功能有待进一步开发。另一关键技术是网荷接口标准,国际上网荷通信较为主流的协议标准为美国的OpenADR20,国内目前已发布行业标准《DLT1867——2018电力需求响应系统信息交换规范》,有助于统一和规范设备通信接口,提高需求响应效率。 自动需求响应不同于传统的需求响应,特别是在自动化程度及对触发响应时间方面,二者的不同如表1所示。 其它各种能源的供需平衡的实时性远不如电能,自动需求响应从时效性方面来说主要在电力领域中发挥作用。而对于可靠性、自动化等方面来说,多种能源的自动需求响应也有其发展的必要性。